Synthesis of the First Thorium-Containing Nitride Perovskite, TaThN₃

Nathaniel E. Brese¹ and F. J. DiSalvo

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301

Received November 15, 1994; in revised form August 28, 1995; accepted August 28, 1995

TaThN₃ can be prepared from a reaction of Ta₂Th₂O₉ and Ca₃N₂ at 1100-1500°C or from a reaction of Ta₃N₅ and Th₃N₄ at 1400°C. This black polycrystalline material crystallizes in the perovskite structure type with a = 4.020(6) Å. © 1995 Academic Press, Inc.

INTRODUCTION

Nitride and oxynitride perovskites are relatively uncommon, largely due to the high formal charges required of the cations. For a composition ABN_3 , the oxidation state possibilities for A and B are (1, 8), (2, 7), (3, 6), and (4, 5). To date, only the (3, 6) combination has been explored (1); a (2, 5) combination is also known for oxynitrides such as $BaTaO_2N$ (2, 3).

The main difficulty arises in fully oxidizing the cations. The high charges required of the cations to counterbalance the 9- charge from the nitrogen atoms are generally unobserved in the binary nitrides. Tantalum is, in fact, the only early transition metal that readily forms a binary nitride in which the transition metal is in its highest possible oxidation state (4). While Ta₃N₅ can be formed from TaCl₅ or Ta₂O₅, HfN and WN are the most nitrogen-rich bulk phases for its neighbors. Likewise, thorium is unique in its ability to form a binary nitride, in which it is formally in the 4+ valence state. To stabilize a ternary nitride, one would like to involve transition elements that are known to be readily oxidized by nitrogen (5). Therefore, both Ta and Th should be excellent components of ternary nitrides.

Materials like LaWN_{3-x}O_x have been studied for use as dielectrics (6, 7, 8), since the dielectric response varies with the O/N ratio and since the O/N ratio is easily adjustable over a wide range (x = 0.6 - 2.0) (9). LaWN_{3-x}O_x is prepared from La₂W₂O₉ at 700°C under flowing NH₃. The nonintegral oxidation state of W suggests a means for their observed electrical properties.

The structure of LaWN_{3-r}O_r has been determined by neutron diffraction (1) and found to be best described in the noncentrosymmetric spacegroup $\overline{14}$. It is known that noncentrosymmetric transition metal compounds with delocalized excited states and a moderate to large bandgap should have nonlinear optical responses, namely large second harmonic generation. Wiegel et al. have noted the responses in pure oxide niobates and titanates (10). It seems reasonable to expect a strong NLO response in nitride perovskites, since they show a propensity toward noncentrosymmetry and since their more-covalent M-Nbonds should yield smaller bandgaps than their oxide counterparts. However, TaTh(N,O), and LaW(N,O), are black, probably due to the disorder in their anionic networks. Pure nitride phases are extremely difficult to prepare, so the search for useful NLO materials in the oxynitride perovskite system must continue.

SYNTHESIS

Th₂Ta₂O₉ can be prepared from the binary oxides at 1380°C (11). These reactions were carried out in welded Ta ampoules to reduce the possibility of Th release to the laboratory. Th₂Ta₂O₉ does not react with flowing NH₃ up to 1000°C. Reactions of Th₂Ta₂O₉ with Ca₃N₂, however, produced CaO and the black, air-sensitive perovskite phase, TaTh(O,N)₃. There was always a trace of TaN_x, a product of a reaction with the Ta tube wall, as Ca₃N₂ certainly decomposes before the ternary-forming reaction takes place. The presence of impurities precluded any bulk N analysis. These reactions were carried out at higher temperatures (T = 1100-1500°C). Similar treatments of Th₂Nb₂O₉ (12) did not yield perovskite phases.

Ta₃N₅ was prepared from TaCl₅ in flowing ammonia, as described previously (4, 13); little or no Cl is present in the final product, as determined by EDAX analysis. Th₃N₄ can be prepared from the combination of the elements at $700-1300^{\circ}$ C (14); however, we produced Th₃N₄ from a reaction of ThCl₄ with LiNH₂ in liquid ammonia. The Th(NH₂)₄ · nNH₃/LiCl mixture was washed several times with liquid ammonia. The resultant amorphous material

¹ Current address: OSRAM SYLVANIA, Inc., Chemical & Metallurgical Products, Flawes St., Towanda, PA 18848.

TABLE 1
X-Ray Diffraction Intensity Comparison of Some TaThN₃
Structural Models versus the Observed Intensities

h	k	l	2θ	d	I(CsCl)	I(perov.)	I(TaThN _{2.5})	I(obs)
1	0	0	22.09	4.020	18.7	10	11.3	
1	1	0	31.45	2.843	1000	1000	1000	1000
1	1	1	38.77	2.321	6.4	21.6	18.2	[155]
2	0	0	45.07	2.010	189.3	245.9	235.4	348
2	1	0	50.74	1.798	9.5	6.7	7.1	
2	1	1	55.99	1.641	402.3	410.3	408.9	[764]
2	2	0	65.64	1.421	125.6	157.7	151.9	177
3	0	0	70.18	1.340	1.1	0.8 .	0.9	
2	2	1	70.18	1.340	4.3	3.4	3.5	
3	1	0	74.59	1.271	175.2	180.2	179.3	320
3	1	1	78.92	1.212	3.5	7.8	6.9	

Note. The nitrogen content makes very little contribution to the diffraction intensities. Observed intensities in square brackets include the intensity of overlapping Th_2N_2O peaks.

was heated to 900°C under purified, flowing N_2 to yield crystalline Th_3N_4 and a trace of Th_2N_2O (1–5 mole%). Excess LiCl condensed at the cold end of the tube.

Reaction of the binary nitrides, Ta_3N_5 and Th_3N_4 , at 1400°C results in an air-sensitive perovskite phase. Again the product was always contaminated with a small amount of TaN_x and, in this case, some Th_2N_2O (1–5 mole%, as estimated from X-ray diffraction data).

RESULTS AND DISCUSSION

X-ray diffraction patterns were collected on a Scintag XDS2000 θ - θ diffractometer, fitted with a solid-state detector. The sample was protected from the atmosphere by a mylar film during the data collection. The peaks from an automatic peak-finding routine using the Pearson VII function were indexed on a primitive cubic cell, a = 4.020(6) Å. Materials made from oxide precursors as well as those produced from the binary nitrides had the same lattice parameters within the estimated standard deviation.

The metal atoms in the perovskite structure are located in the same positions as in the CsCl structure. In fact, the material La₂U₂N₅ has been observed by Waldhart and Ettmayer (15) with a structure related to perovskite (or CsCl) but with a tetragonal distortion to accommodate a deficit of nitrogen atoms. LAZY-PULVERIX (16) calculations for an ideal perovskite, "Ta₂Th₂N₅" (modeled after La₂U₂N₅), and "ThTa" (modeled after CsCl) are given in Table 1. The X-ray diffraction data is not sufficiently sensitive to nitrogen to discern between these models. Nevertheless, no splitting was observed which would support the tetragonal model. Furthermore, the pure intermetallic possibility can be eliminated, since the material gives off an ammonia odor when exposed to water, indicating the

FIG. 1. The ideal perovskite structure. Ta atoms center the N_6 octahedra. Large circles represent Th atoms. N atoms are located at the vertices of the octahedra.

presence of an ionic nitride. Therefore, we favor the full perovskite model which is depicted in Fig. 1. We cannot, however, preclude a small partial substitution of oxygen for nitrogen in the material.

One expects bond valences of 5/6 for the Ta-N bonds and bonds of valence 4/12 for the Th-N bonds, since Ta and Th are in 6- and 12-coordination, respectively (for a review, see (17, 18)). Using the available nitride bond valence parameters (5), one expects d(Th-N) = 2.75 Å (obs. 2.84 Å) and d(Ta-N) = 2.07 Å (obs. 2.01 Å). The longer than expected d(Th-N) and the shorter than expected d(Ta-N) indicate some competition between those two attractive forces which could easily give rise to a distortion from cubic symmetry. Any distortion from cubic symmetry would probably be due primarily to the anions; this effect is not observable from X-ray powder diffraction data.

Madelung potentials, calculated using the Ewald method (19), and bond valence sums are listed in Table 2. We have shown previously that the site potentials in nitrides are roughly -12q volts, where q is the formal oxidation state (5). The site potential for Th seems low, but this is expected, since the Th-N bonds are the longer ones. Note that the potentials scale as 1/d. Similar site potentials are seen in Th₃N₄ (14) and the Th₂N₂Q (Q = O, S, Se, Te) (20-22) series (5).

Finally, it is irresistible to comment on the parallels between TaThN₃ and the oxide superconductors. Histori-

TABLE 2
Bond Valence Sums and Madelung Potentials for TaThN₃ (a = 4.020 Å) with the Ideal Perovskite Structure

Atom	Bond valence sum	Charge (q)	Potential (V)
Ta	5.84	5.00	-59.22
Th	3.09	4.00	-36.24
N	2.98	-3.00	32.95

cally, nitrides have shown considerable promise as superconductors with critical temperatures predicted up to about 30 K (23-26). The boom in superconductivity research in the last 10 years spilled back into the nitride arena (27). With the same perovskite building blocks being present in both oxide superconductor and ternary nitride systems, one can again envision nitride chemistry playing a role in superconductivity research. Successes in novel, layered nitride systems are emerging (28).

We have prepared the first Th-containing nitride perovskite. It crystallizes in the spacegroup Pm3m with a=4.020(6) Å. We have described the use of metathesis reactions to form ternary nitrides from ternary oxides; this technique is general and should yield a plethora of new materials. The propensity of nitrides for noncentrosymmetry and their covalent bonds render the nitride system a potential hunting ground for NLO materials.

ACKNOWLEDGMENTS

We thank R. LaDuca and P. Wolczanski for the gift of ThCl₄. We acknowledge the support of the NSF through Grant DMR-8920583.

REFERENCES

- P. Bacher, P. Antoine, R. Marchand, P. L'Haridon, Y. Laurent, and G. Roult, J. Solid State Chem. 77, 67 (1988).
- F. Pors, P. Bacher, R. Marchand, Y. Laurent, and G. Roult, Rev. Int. Hautest Tempér. Réfract. 24, 239 (1987-1988).
- F. Pors, R. Marchand, Y. Laurent, P. Bacher, and G. Roult, *Mater. Res. Bull.* 23, 1447 (1988).

- N. E. Brese, M. O'Keeffe, P. Rauch, and F. J. DiSalvo, Acta Crystallogr. C 47, 2291 (1991).
- 5. N. E. Brese and M. O'Keeffe, Struct. Bonding. 79, 307 (1992).
- R. Marchand, F. Pors, Y. Laurent, O. Regreny, J. Lostec, and J. M. Haussonne, J. Physique C 47, 901 (1986).
- 7. R. Marchand and Y. Laurent, Fr. Demande 2,573,060 (1986).
- P. Antoine, R. Marchand, Y. Laurent, C. Michel, and B. Raveau, Mater. Res. Bull. 23, 953 (1988).
- 9. N. E. Brese and F. J. DiSalvo, unpublished results, 1994.
- M. Wiegel, M. Hamoumi, and G. Blasse, *Mater. Chem. Phys.* 36, 289 (1994).
- 11. G. Schmidt and R. Gruehn, J. Less-Common Met. 156, 75 (1989).
- R. J. Cava, R. S. Roth, and D. B. Minor, Commun. Amer. Ceram. Soc. 64 (1981).
- 13. P. E. Rauch and F. J. DiSalvo, J. Solid State Chem. 100, 160 (1991).
- 14. A. L. Bowman and G. P. Arnold, Acta Crystallogr. B27, 243 (1971).
- 15. J. Waldhart and P. Ettmayer, Monat. Chem. 110, 21 (1979).
- K. Yvon, W. Jeitschko, and E. Parthé, LAZY-PULVERIX (1977), Laboratoire de Cristallographie aux Rayons-X, Univ. de Geneva, 24 Quai Ernest Ansermet, CH 1211 Geneva 4, Switzerland.
- 17. M. O'Keeffe, Struct. Bonding 71, 161 (1989).
- 18. I. D. Brown, Acta Crystallogr. B. 48, 553 (1992).
- 19. M. P. Tosi, Solid State Phys. 16, 1 (1964).
- 20. R. Benz and W. H. Zachariasen, Acta Crystallogr. 21, 838 (1966).
- 21. R. Benz and W. H. Zachariasen, Acta Crystallogr. B25, 294 (1969).
- 22. R. Benz and W. H. Zachariasen, Acta Crystallogr. B26, 823 (1970).
- 23. B. T. Matthias and J. K. Hulm, Phys. Rev. 87, 799 (1952).
- 24. B. T. Matthias, Phys. Rev. 92, 874 (1953).
- 25. G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).
- D. A. Papaconstantopoulos, W. E. Pickett, B. M. Klein, and L. L. Boyer, Nature 308, 494 (1984).
- 27. F. J. DiSalvo, Science 247, 649 (1990).
- R. J. Cava, H. W. Zandbergen, B. Batlogg, H. Eisaki, H. Takagi, J. J. Krajewski, J. W. F. Peck, E. M. Gyorgy, and S. Uchida, *Nature* 372, 245 (1994).